首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2159篇
  免费   105篇
  2023年   3篇
  2022年   3篇
  2021年   31篇
  2020年   24篇
  2019年   21篇
  2018年   35篇
  2017年   30篇
  2016年   39篇
  2015年   78篇
  2014年   97篇
  2013年   138篇
  2012年   143篇
  2011年   150篇
  2010年   96篇
  2009年   114篇
  2008年   160篇
  2007年   152篇
  2006年   161篇
  2005年   133篇
  2004年   136篇
  2003年   138篇
  2002年   136篇
  2001年   16篇
  2000年   21篇
  1999年   12篇
  1998年   12篇
  1997年   16篇
  1996年   14篇
  1995年   18篇
  1994年   15篇
  1993年   18篇
  1992年   5篇
  1991年   9篇
  1990年   5篇
  1989年   9篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   10篇
  1981年   10篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   6篇
  1975年   4篇
  1970年   3篇
排序方式: 共有2264条查询结果,搜索用时 583 毫秒
101.
To synthesize new highly active taxoids, we designed and synthesized 9 beta-dihydro-9,10-acetal taxoids. In vitro study of these analogues clearly showed them to be more potent than docetaxel.  相似文献   
102.
103.
It is known that hen egg white lysozyme (HEWL) forms amyloid fibrils. Since HEWL is one of the proteins that have been studied most extensively and is closely related to human lysozyme, the variants of which form the amyloid fibrils that are related to hereditary systemic amyloidosis, this protein is an ideal model to study the mechanism of amyloid fibril formation. In order to gain an insight into the mechanism of amyloid fibril formation, systematic and detailed studies to detect and characterize various structural states of HEWL were conducted. Since HEWL forms amyloid fibrils in highly concentrated ethanol solutions, solutions of various concentrations of HEWL in various concentrations of ethanol were prepared, and the structures of HEWL in these solutions were investigated by small-angle X-ray and neutron scattering. It was shown that the structural states of HEWL were distinguished as the monomer state, the state of the dimer formation, the state of the protofilament formation, the protofilament state, and the state towards the formation of amyloid fibrils. A phase diagram of these structural states was obtained as a function of protein, water and ethanol concentrations. It was found that under the monomer state the structural changes of HEWL were not gross changes in shape but local conformational changes, and the dimers, formed by the association at the end of the long axis of HEWL, had an elongated shape. Circular dichroism measurements showed that the large changes in the secondary structures of HEWL occurred during dimer formation. The protofilaments were formed by stacking of the dimers with their long axis (nearly) perpendicular to and rotated around the protofilament axis to form a helical structure. These protofilaments were characterized by their radius of gyration of the cross-section of 2.4nm and the mass per unit length of 16,000(+/-2300)Da/nm. It was shown that the changes of the structural states towards the amyloid fibril formation occurred via lateral association of the protofilaments. A pathway of the amyloid fibril formation of HEWL was proposed from these results.  相似文献   
104.
Proteases involved in long-term potentiation   总被引:6,自引:0,他引:6  
Much attention has been paid to proteases involved in long-term potentiation (LTP). Calpains, Ca-dependent cysteine proteases, have first been demonstrated to be the mediator of LTP by the proteolytic cleavage of fodrin, which allows glutamate receptors located deep in the postsynaptic membrane to move to the surface. It is now generally considered that calpain activation is necessary for LTP formation in the cleavage of substrates such as protein kinase Czeta, NMDA receptors, and the glutamate receptor-interacting protein. Recent studies have shown that serine proteases such as tissue-type plasminogen activator (tPA), thrombin, and neuropsin are involved in LTP. tPA contributes to LTP by both receptor-mediated activation of cAMP-dependent protein kinase and the cleavage of NMDA receptors. Thrombin induces a proteolytic activation of PAR-1, resulting in activation of protein kinase C, which reduces the voltage-dependent Mg2+ blockade of NMDA receptor-channels. On the other hand, neuropsin may act as a regulatory molecule in LTP via its proteolytic degradation of extracellular matrix protein such as fibronectin. In addition to such neuronal proteases, proteases secreted from microglia such as tPA may also contribute to LTP. The enzymatic activity of each protease is strictly regulated by endogenous inhibitors and other factors in the brain. Once activated, proteases can irreversibly cleave peptide bonds. After cleavage, some substrates are inactivated and others are activated to gain new functions. Therefore, the issue to identify substrates for each protease is very important to understand the molecular basis of LTP.  相似文献   
105.
We used the Ames assay to investigate changes in the mutagenicity of chlornitrofen during its aerobic biodegradation. Although a mixed culture of bacteria obtained from river water degraded chlornitrofen and reduced its concentration from 39 to 6 microg/l in 21 days, the indirect mutagenicity of the solution to Salmonella strains TA98, YG1021, and YG1026 increased gradually. This finding suggests that mutagenic metabolites were produced during the aerobic biodegradation. The increase in the mutagenicity was, however, much smaller under aerobic than under anaerobic conditions. The differing sensitivities of our test strains to the functional groups on the mutagens showed that the mutagenic metabolites were indirect frameshift-type mutagens that might have neither nitro nor amino groups.  相似文献   
106.
Itoh S  Katoh M  Furuhama K 《Mutation research》2002,520(1-2):133-139
The skin micronucleus test combined with irradiation due to a sunlight simulator having a spectrum almost identical to solar irradiation was used as a novel in vivo testing method for detecting or comparing the photochemical chromosome damage of quinolone antibacterial agents (quinolones). Eight-week-old male SKH1 hairless mice were orally administered once lomefloxacin (LFLX), a strong in vitro photochemical clastogen, at 25 or 50 mg/kg, followed by light irradiation at 7.9-9.4J/cm2 of ultraviolet A (UVA). Animals were killed on Days 2, 3, 4, 5 or 8 (the dosing day was designated as Day 1), and the incidence of micronucleus in the epidermis was determined. As results, LFLX at either dose caused significant increases in the micronucleus frequency, which peaked on Day 4. These changes tended to return to the control level on Day 8. Then, the micronucleus induction potential of the quinolone derivatives levofloxacin (LVFX) and clinafloxacin (CLFX) at 10, 20 or 40 mg/kg was assessed on Day 4 under the same experimental conditions as for LFLX. Although LVFX was negative even at 40 mg/kg, CFLX dose-dependently induced significant increases in micronucleus frequency at all doses. The correlation of magnitude among the three quinolones in the skin micronucleus test with light irradiation was similar to that in our previous in vitro photochemical clastogenicity study. No significant increase in micronucleus frequency was observed in any of three quinolones employed without light irradiation. In conclusion, the experimental method presented here would be a useful tool for detecting in vivo photochemical chromosome damage and for research on photochemical carcinogenesis of chemicals.  相似文献   
107.
Vascular endothelial growth factor (VEGF) and its receptors play a key role in angiogenesis. VEGF receptor-2 (VEGFR-2) has a tyrosine kinase domain, and, once activated, induces the phosphorylation of cytoplasmic signaling proteins. The phosphorylated VEGFR-2 may be a substrate for intracellular protein tyrosine phosphatases (PTPs) which prevent VEGF signaling. We synthesized a series of alpha,alpha-difluoro(phenyl)methylphosphonic acids (DFPMPAs) which inhibit the action of PTP. In this study, we test their effects on VEGF-induced angiogenesis. DFPMPA-3, the most effective inhibitor of human PTP-1B, promoted tube formation by human umbilical vein endothelial cells (HUVEC) on Matrigel more effectively than any other DFPMPAs. The inhibitor promoted the VEGF-induced proliferation and migration of HUVEC by inhibiting the dephosphorylation of VEGFR-2. Its effectiveness was proven through neo-vascularization in mice. The present findings suggest that targeting PTP to promote therapeutic neo-vascularization may be a potential strategy.  相似文献   
108.
The mangrove killifish Rivulus marmoratus, a neotropical fish in the order Cyprinodontiformes, is the only known obligatorily selfing, synchronous hermaphroditic vertebrate. To shed light on its population structure and the origin of hermaphroditism, major histocompatibility complex (Mhc) class I genes of the killifish from seven different localities in Florida, Belize, and the Bahamas were cloned and sequenced. Thirteen loci and their alleles were identified and classified into eight groups. The loci apparently arose approximately 20 million years ago (MYA) by gene duplications from a single common progenitor in the ancestors of R. marmoratus and its closest relatives. Distinct loci were found to be restricted to different populations and different individuals in the same population. Up to 44% of the fish were heterozygotes at Mhc loci, as compared to near homozygosity at non-Mhc loci. Large genetic distances between some of the Mhc alleles revealed the presence of ancestral allelic lineages. Computer simulation designed to explain these findings indicated that selfing is incomplete in R. marmoratus populations, that Mhc allelic lineages must have diverged before the onset of selfing, and that the hermaphroditism arose in a population containing multiple ancestral Mhc lineages. A model is proposed in which hermaphroditism arose stage-wise by mutations, each of which spread through the entire population and was fixed independently in the emerging clones.  相似文献   
109.
In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss of the catalytic activity. To identify upstream regulators of 1,3-beta-glucan synthesis, we isolated multicopy suppressors of the GS mutation. We demonstrate that all of the multicopy suppressors obtained (WSC1, WSC3, MTL1, ROM2, LRE1, ZDS1, and MSB1) and the constitutively active RHO1 mutations tested restore 1,3-beta-glucan synthesis in the GS mutant. A deletion of either ROM2 or WSC1 leads to a significant defect of 1,3-beta-glucan synthesis. Analyses of the degree of Mpk1p phosphorylation revealed that among the multicopy suppressors, WSC1, ROM2, LRE1, MSB1, and MTL1 act positively on the Pkc1p-MAPK pathway, another signaling pathway regulated by Rho1p, while WSC3 and ZDS1 do not. We have also found that MID2 acts positively on Pkc1p without affecting 1,3-beta-glucan synthesis. These results suggest that distinct networks regulate the two effector proteins of Rho1p, Fks1p and Pkc1p.  相似文献   
110.
Cyclin-dependent kinase 5 (cdk5) is a serine/threonine kinase activated by associating with its neuron-specific activators p35 and p39. Analysis of cdk5(-/-) and p35(-/-) mice has demonstrated that both cdk5 and p35 are essential for neuronal migration, axon pathfinding and the laminar configuration of the cerebral cortex, suggesting that the cdk5-p35 complex may play a role in neuron survival. However, the targets of cdk5 that regulate neuron survival are unknown. Here, we show that cdk5 directly phosphorylates c-Jun N-terminal kinase 3 (JNK3) on Thr131 and inhibits its kinase activity, leading to reduced c-Jun phosphorylation. Expression of cdk5 and p35 in HEK293T cells inhibits c-Jun phosphorylation induced by UV irradiation. These effects can be restored by expression of a catalytically inactive mutant form of cdk5. Moreover, cdk5-deficient cultured cortical neurons exhibit increased sensitivity to apoptotic stimuli, as well as elevated JNK3 activity and c-Jun phosphorylation. Taken together, these findings show that cdk5 may exert its role as a key element by negatively regulating the c-Jun N-terminal kinase/stress-activated protein kinase signaling pathway during neuronal apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号